
WHEN I FOUND A SECURITY VULNERABILITY IN
ZIVAME

 Khushank Raj Mahawan

Vulnerability

REFLECTED XSS in input parameter(search-box) on the website.

Description:-

Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts
are injected into otherwise benign and trusted websites. XSS attacks occur when an
attacker uses a web application to send malicious code, generally in the form of a
browser side script, to a different end user. Flaws that allow these attacks to succeed
are quite widespread and occur anywhere a web application uses input from a user
within the output it generates without validating or encoding it.

An attacker can use XSS to send a malicious script to an unsuspecting user. The end
user’s browser has no way to know that the script should not be trusted, and will
execute the script. Because it thinks the script came from a trusted source, the
malicious script can access any cookies, session tokens, or other sensitive information
retained by the browser and used with that site. These scripts can even rewrite the
content of the HTML page.

You Can Read More at:

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

Proof-of-Concept(PoC)

Firefox Version : 70.0.1 (64-bit)

OS Version: 10.0

URL:- https://www.zivame.com/

Vulnerable Parameter: search box

Other browsers tested:

Chrome, Safari, Edge(All are showing same output)

What steps will reproduce the problem?

1.Normally Open the URL in browser

2.Type <script>alert(1)</script> in the search-box

3.Pop with ‘1’ will show up on screen.

What is the expected result?

Any kind of script should not be executed through input parameters on client side as it
allows a hacker or any other unauthorized user to inject malicious code inside the
script for attacks like cookie stealing and session hijacking etc.

What happens instead of that?

Script tags and html tags are executing directly on the client side that is a major
concern and vulnerability that can be critical, allowing the attacker to take full control
of the website and compromise all other users and their data.

Suggestive Measures to Prevent such vulnerability:

In general, effectively preventing XSS vulnerabilities is likely to involve a
combination of the following measures:

 Filter input on arrival. At the point where user input is received, filter as
strictly as possible based on what is expected or valid input.

 Encode data on output. At the point where user-controllable data is output in
HTTP responses, encode the output to prevent it from being interpreted as
active content. Depending on the output context, this might require applying
combinations of HTML, URL, JavaScript, and CSS encoding.

 Use appropriate response headers. To prevent XSS in HTTP responses that
aren't intended to contain any HTML or JavaScript, you can use the Content-
Type and X-Content-Type-Options headers to ensure that browsers interpret
the responses in the way you intend.

 Content Security Policy. As a last line of defense, you can use Content
Security Policy (CSP) to reduce the severity of any XSS vulnerabilities that
still occur.

I am also attaching a small PoC(proof –of-concept) screenshots for more
clarification on this responsible disclosure.

Conclusion:-

I am a Cyber Security Student & found this vulnerability while Bug Hunting so it was
my responsibility to report you about the same to maintain Cyber safety and disallow
hackers or unauthorized people to make a misuse for the same. I did not tamper any
data or disclosed this vulnerability to anyone.

Any sort of Reward/Bounty and Hall Of Fame/Certificate of Appreciation from
your side to me will be appreciated and keep me motivated to help more
organisations and users from cyber risks.

Thank You

KHUSHANK RAJ MAHAWAN

POC

Step1

Step2

